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SUMMARY

Formulas have been obtained by means of the linearized supersonic-
flow theory for the lateral.force due to sideslip CyBj the yawing moment

.
due to sideslip Cn , and the rolling moment due to sidesliy CZ for

R i B
,cnormal.tail srrang&ents consisting of rectangular, triangular, and
sweptback vertical tails of arbitrary taper and sweep mounted symmetri-
cally on a horizontal tail of arbitrary shape. The results are restricted
to cases where the leading edges sre supersonic and the Mach line from
the tip of the leading”edge of the vertical tail does not intersect the
root section.

The effect of the horizontal
f& the cases where the”Macliline
section cuts the trailing edge of

tail on the derivatives was evaluated
from the leading edge of the root
the-vertical tail.

A series of design curves is presented which permits rapid estimation
of the lateral force due to sideslip CYB, the yawing moment due to

sideslip C
%’

and the rolling moment due to sideslip Cz .
P

INTRODUCTION

With the advent of flight at superso~c speeds the dynamic stability
of airplanes has become a serious consideration. The conceptions and

w usage of the linearized theory of’supersonic flow enable an evaluation

. of a first-order approximation of the stability derivatives. Stability
derivatives are now availablefor various wing plan forms at supersonic“;
speeds. (See bibliograp~ of reference 1 and references,of reference 2.)
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Information on
tail, which have an

the stability derivatives contributed by the vertical ?
tiportant effect on lateral stability, is lacking.

A theoretical analysis 3-spresented in this pap=r to determine the
lateral force, the yawing moment, and the rolling moment due to sideslip
for a series of tail configurations that consist of vertical tails
mounted symmetrically on a horizontal tail. The tail configurations
considered herein sre characterizedby supersonic leading edges. The
vertical-tail plan form may be either triangular, rectang&r, or swept-
back with srbitrary taper and sweep; whereas the horizontal tail may be
arbitrary except for the rolling-mcnnentderivative for which case the
trailing ed$e must be swept at a constant angle. Consideration is also
given to the magnitude of the end-plate effect of the horizontal tail on
the values of the stability derivatives. From a knowledge of the deriv-
ative for the verticsl- and horizontal-tail combination and the end-
plate effect on this derivative, the derivative of a vertical tail with
horizontal tail removed ~s obtained.’ These results are the limits of
the case where the horizontal tail has subsonic edges, and the value of
the stability derivative when the edges of the horizontal tail sre “
subsonic are expected, therefore, to lie between the values of the ‘deriv-
ative with the horizontal tail (sJ-ledges supersonic} attached to the
vertical tail and the values of the derivatives for the vertical tail
alone.

The calculations of the loading distributions that lead to the
sideslip derivatives for nonplansr bodies, such as a tail configuration,
are somewhat complex in the large. For a range of Mach mmiber for which

.

. the leading edges of the tail plan forms are supersonic the load distri-
bution due to sideslip over the horizontal and vertical tail can, however,
be determined rath&r simply. For a normal tail assemblage, this simplifi-
cation of the analysis results from the fact that the flow fields within
the Mach cone from the apex of the system are physically separatedby
the horizontal and vertical tail smfaces and, therefore, do not inter-
act. The load distributions for such systems maybe determined by an
application of plamar methods together with the evaluation of the induced
load effects if any.

In order to facilitate the use of the formulqs and charts presented
herein for the esthation of the stabili~ derivatives, a detailed method
of procedure has been included in the paper.

. .
SYMBOLS

.

A aspect ratio of vertical tail

Al =BA
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B=

bv

bw

%

%?

c

J=

K=

2

%

%

M

m

m
o

cl “

span of vertical tail

span of wing

.

.

.

root chord

nondimensional pressure coefficient

chord .,,

A’(1 +X)

Slope of leading edge cot @ A’(l +X)-
Slope of trailing edge = cot A ‘A’(I + A) - 2m’(1 - k)

distance from z-axis to leading edge of arbitrary section
of vertical”tail

distance from center of gravity to root section of vertical .
tail

spanwise loading ‘“- ,

free-stream Mach number

slope of leading edge .ofvertical tail

slope of trailing edge of horizontal tail

m’ =Bm

AP pressure difference across lifting surface

q=&#

Sw

u, v, w
,.

v

area,of

area of

x-, y-,

vertical tail

wing

and z-components of perturbation velocity, respectively

free-stream veloci~

rectangular coordinates (see fig. 2)
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‘a rectangulsx coordinates (see’tables I and II)
.

distance along x-axis to’center of pressure of vertical tail
in presence of horizontal tail (see fig. 2)

.
distance along z-axis to center of pressure of vertical tail
in presence of horizontal tail (see fig. 2) .

increment in ~ due to removal of horizontal tail

increment in ~ due to removal of horizo&l. tail

angle of attack, radians

sideslip angle, radians

taper ratio of

sweep angle of

sweep angle of

vertical ‘tail ...

leading ewe of vertical tail

trailing edge of vertical tail

free-stream densi~

perturbation surface velocity potential

‘atera’-forcec”e fficie”ttaz~:ce)

{
Yawing moment

yawing-moment coefficient . \

rolling-moment coefficient

.2
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r,
CL wing lift coefficient

()&L

c%= l%a+o

()CY t ldteral-force

()
cnt ,yawing-mcment

coeffident of vertical and horizontal tail

coefficient of vertical and horizontal tail

()C2 t rolling-moment coefficient of vertical and

()CY ~ lateral-force coefficient of ver+ical tail
tail attached

5

horizontal tail

without horizontal

()
c yawing-moment coefficient of vertical tail’without horizontal
nv tail attached

()c1~ rolling-moment coefficient of vertical tail without horizontal
tail attached

“ (cY,)t=p9]p+o “

[1

()
acnt

(%)c =
t a~ p---+o

.
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contribution of tail to sideslip derivatives about “
.

stability axes based on wing sxea and span; values
apply to vertical- and horizontal-tail combinations
unless otherwise noted

()
contribution to Cl of pressure difference across. :P t
vertical tail in presence of horizon= tail

()
contribution to CZB + of pressure difference across

horizontal tail

()
change in ~

Pt

()c-e ‘n c% t

()
change in C~

Pvt

ii”jresence of vertical tail

due to horizontal tail

due to horizontal tail ‘

due to horizonta3”tail

ANALYSIS

Scope

The tail configurations considered in this Wper are sketched in
figure 1. The orientation of the tail with respect to a body system
of coordinate axes used in the analysis is shown in figure 2(a).
Figure 2(b) shows a Q_pical tail oriented tith respect to the stability-
axes systan. The stability derivatives sre generally eval~ted in this
system for stabili~ studies.

The analysis is 13mited to tail configurations having surfaces of
vanishingly small thiclmess and of zero camber. The vertical tail is
assumed to be yawed an infinitesimal amount (P-O); whereas the hori-
zontal tail is always at zero gemnetric angle of attack. Essentially
then, the vertical tail produces the disturbance velocities (sWlsr
to a wing at an angle of attack) and the horizontal tail acts as a
barrier or end plate to the propagation of the vertical-tail disturbances
(similar to end plate attached to lifting wing).

For the tail arrangements considered in this paper, the horizontal
tail must completely shield the roof chord of the vertical tail; thus,
the leading edge of the root chord of the horizontal tail must at least
coincide with or be forward of the leading edge of the root chord of the
vertical tail and, similarly, the trailing edge of the root chord of the

.——— — —— -— ——. .— ——
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horizontal tail must coincide with or he in back of the trailing edge of
the root chord of the vertical tail. The results to be presented in the
following sections for the vertical tail completely shielded by the hori-
zontal tail and for the vertical-tail-alone case may be used, however, to
obtain rough estimations of the derivatives-for tail arrangements for
which the horizontal tail does not completely shield the root chord of
the vertical ‘tail. Estimates can be made in this manner by interpolation
with a fair de~ee of accuracy because the end-plate effect of the hori-
zontal tail is relatively small even for the cases considered in this
paper where the horizontal tail is a perfect end plate.

The stabili~ derivatives me valid for a range of Mach number for
which the leading and trailing edges of the tail surfaces we supersonic;
that is, the Mach number of the flow component normal to these edges is
greater than 1.

()
The results for the derivatives Cy

Pt
for the case of

vertical-tail - horizont@-tail combinations have the added restriction
that the Mach line from the tip of the leading edge of the vertical tail
does not intersect the root section. The derivatives C

(%) ()
and Cl

t Pt
have the same restriction as-mentioned previously and a further restriction
which requires that the Mach line from the “rootsection must intersect
the trailing edge of the vertical tail. For the derivatives C

( 4
and

()

t

and c% t’
however, values were obtained for the limiting case for which

the Mach line from the root section is coincident with the leadlng edge ‘
of the Vertical tail. From this result, together with the results
obtained when the Mach line intersects the trailing edge, an esttition

(%)
of the values of the derivatives C

()
and Cl can be obtained for

t’ Pt
the range of Mach nuoiberwhere the Mach line from the root section cuts “
the tip of the vertical.tail. The restits for the effect of the hori-
zontal tail (the so-called end-plate effect) on the derivatives are
restricted to cases where the Mach line from the root
trailing edge of the vertical tail and to cases where
the leading edge of the tip of the vertical tail does
root

~.
%“

section.

Basic Considerations

section cuts the
the Mach line from
not intersect the

The evaluation of”the tail contribution to the derivatives Cyp)

and C2 essentially involves a knowledge of the lifting-pressure
P

distribution over the tail surfaces associated with sideslip (angle of
attack Qf the vertical tail). The lifting-pressure,coefficientcan be
determined from the perturbation velocity potential by the well-lmown

. . .— —..,—-————- — —.- ---—— -— ——— ————
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I .

relationship

&p=’*=–
V2

;Au’
*P

or

lWp =$~A@(x,y, z) (1)

where A@ is.the velocity-potential difference across tb surface.
Eq=tion (1) is consistent with the sm@l perturbation theory only if
the magnitudes of the perturbation velocities are equal across the
lifting surface. When the magnitudes of the perturbation velocities
are not equal across the lifting surface, equation (1) should contain
differences in the squares of the velocities v and w. The squared
terms lead to derivatives which are linear functions of 0; therefore,
these terms will vanish because the derivatives are to be evaluated as
f3+o. .

The real problem of finding the pressure distribution over the tail
surfaces is therefore to find the veloci~ potential on each side of
each tail surface. The tail configurations considered, as mentioned
previously, are of the nonplanar type and are, of course, unsymmetrical
with respect to the y- and z-axes. The determination of the velocity
potential or its derivatives for nonplanar systems of the unsymmetrical
type is usually quite difficult, particularly when the leading and

D

trailing edges of the configuration sre subsonic. For these same tall
configurations,however, when the leading and trailing edges of the hori- )
zontal tail are supersonic, linearized expressions for the surface velocity

. potential and lifting pressures may be easily obtained. If reference is
made to the sketches of the tail configurations presented in figure 1, “
it canbe seen that so long as the leading and trailing edges of the
horizontal tail surfaces are supersonic, the horizontal tail actd’as a
reflecting plane. The flow over the lower surface of the horizontal tsil
is therefore @sturbedj’ hence, the compopent of perturbation velocity
in the plane of-the horizontal tail surface is zero. The solution for
the potential in the region affected by the vertical tail is therefore
the solution for a symmetrical lifting surface which is made up of the
vertical tail surface and its reflection through the horizontal tail
surface. The potential remains unchanged if the horizonlA. tail is
altered outside the Mach sheet from the leading edge of the vertical tail..

As stated previously, ody the potential on each side of each surface
is needed. The potential and pressure across the vertical tail surfaces
considered herein can be determined directly from the results given In
reference 3. I?orqulasfor these potentials and pressties we presented
for convenience in tables I and II, respectively. It should be rioted’
that the potentisl and the perturbation pressure are zero on the lower
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surface of the horizontal tail. The potential and perturbation pressure
on the upper surface of the horizontal tail were found from the ytential
solution for a lifting surface made up of the vertical tail surface and
its reflection in the horizontal tail. The bource-distributionmqthod
presented in reference 4 was used to find these potentials and the corre-
sponding pressures. The expressions for the potentials and pressures on
the horizontal tail surface are presented in tables I and II, respectively.

If the horizontal tail has subsonic edges in the region behind t~e
Mach sheet from the leading edge of the vertical tail, the potentials
and pressures for the horizontal tail given in tables I and II are no
longer correct. Similarly, if the horizontal tail has a subsonic .leading
or trailing edge in the region behind the Mach sheet from the leading
edge of the vertical tail and if the subsonic-edge disturbances affect
the vertical tail, then the pressure and potential given in tables I
and II for the vertical tail are also invalid.

A rough qy.alitativeestimation of the effect of the subsonic edges
of the horizontal tail on the derivatives considered herein was obtained
by the evaluation of the so-called end-plate effect of the horizontal
tail, that is, the change in the vslues of the derivatives for the complete
configuration when the horizontal tail with all edges supersonic is
completely removed from the vertical tail. The values of the stability
derivatives when the edges of the horizontal tail are subsonic are expected
to be smnewhere between the value of the derivatives with the horizontal
tail “(alledges supersonic) attached to the vertical”tail and the values
of the derivatives for the vertical tail alone. The expressions for the
potentials and pressures for the vertical tail alone were obtained by an
application of Eward’s method (reference >) and axe presented in tables I
and II. Illustrative plots of the chordwise and spanwise pressure distri-
butions across the vertical tail with and without the horizontal tail are
giveninfigure 3. Figure 4 shows illustrative plots of the-chordwise
and spanwise pressure distributions of the induced pressure on the hori-
zontal tail. Illustrative plots of the spanwise loadings for the vertical
and horizontal tails are presented in figure .5.

()Derivative ~ .
Pt -

The nondimensional.lateral force dtieto sidesl.ipderivative may be
expressed as’

()
Lateral.force

Cyp ~ =
P@J

.

The lateral force
over the vertical

.
distribution over

can be obtai&d by integrating the pressure distribution
tail surface in sideslip. (See table I.) The pressure
the vertical .tad.lin the presence of the horizontal tiil

9
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is the same as that for a wing which is composed of the area of the
.

ver%ical tail and its reflection in the horizontal tail. The mgnitude

()of the derivative ~
Pt

of the vertical tail, therefore, is the lif%-

curve slope & of a wing of which the vertical tail is one panel

(semispan of wing). Formulas for CYP t
()

were obtained by transforming
.

the results for ~ presented in reference 3. Since the vertical tail

is a duplicate of one panel of the wing, the transformation merely con-
sists in replacing the aspect ratio of the wing by twice the aspect ratio ‘
of the vertical tail. The resulting expressions for ~

() P-t
in terms of

the aspect ratio of the vertical tail are as follows:

Mach line from the root section coincident with leading edge:

.,
For an arbitraiy taper ratio, .

()Cy
.&

{

K ~~

pt IU3 (1 - X)2(K -I-1) /~
[ 1

Cos-1 (2A - 1) - Cos-1 : -
K

,)

h tik(K - 1)

(1 - x) @ - X)(K + 1) + K(l -KL~2;K + 1) + -

[2K- X(K+lj12 ~08-1 2K + X(1 - 3K)

2 =(1 -
\

(2)
X)2(K + 1) fi/Zi 2K - X(K + 1)

J

For a taper ratio of 1,

()
%
Pt=

..— — — ..—

[

-1 (1 +“2A”)2 C08-1 2A’ -1,

TIA’B 2’ 2A’+1
L

(3)

.,



i-

(

I

1

,

Mach line from the root section c@s the ti~:

For an arbilxary tiper ratio,

m’ .

~’(2A1 - 1) -’A’(K + 3)

1}
.

5’+A’(K -1) -

.:

E’

~’K -A’(K - l~2~~co~_1 2Km’(1 - 2A’), +A’(3 + 1)

A’(K -
+

l)Jx~m 2Km’ - A’(K - 1)

.

‘am’(m’ - 1) +A’(K -1)

Z?Km’ +A’(~+1)

)

,’

(4)

I
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For a taper ratio of 1,

()% = ‘2

{

m’2(m’2 - 2) ~o~-~ 1 m’2

Pt nA’B~ - m12 -1 ;-q~l+

[

m12(mI - 2) ‘1+2A’m’ COB-1

2(m’ - 1)

7
m’~A’[m’ -A’ (m’ - 1)

~ V

ml - Z?A’(m’- 1) .

m’

m’(2A’ - 1)
2Al+ml ‘

(5)

J

Mach line from the root section cuts the traikbg edge:

For an arbitrary taper ratio,

(%)t = *
{ (2@dK +A’(K - lf12 1 ~oe-l~+

A’(K2 -1) “ ~ m’

.

“

_ ..-— —. -
—— .__A— —

—— .. ———-— — -—— -—-
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For a taper ratio of 1,

13

.

()CYPt =

\

[
& -m’:~E2)c0s-’h5’%+

[ 1}m’2(m’ -2) +W,mt ‘
Yr

2(m’ - 1)

For an arbitrary taper

()Cyp t=

ratio where K -=~ or Oj

For rectangular vertical tails,
.

(7)

(8)

(9)

()The effect of the horizontal tail on the derivative Cy
13tws

evaluated by integrating the pressure distribution over tie v’ertical
tail that is induced by the horizontal tail. The induced pressure distri-
bution was obtained by subtracting the pressure distribution of an
isolated panel at an angle of attack (or sideslip) from the pressure
distribution of the vertical tail with horizontal tail attached. The
correspmding nondimensional increment to the lateral-force derivative
is given by the follo~ng equations:

.

,-

.

-.. —.. . .— . .——-—~ ——. — –—.—..—...—.—..- —— -
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Mach line from the root ~ection cuts the trailing edge:

For an arbitxaxy tiper ratio,

. K2fi K3

2(1 - K) ~ (m’K - l)(m’ + 1) -

~oB-l, &

(1’- I&) {m(m Kill’

For a taper ratio of 1,

()A%
~! 2

[

2 - m’2 1
Cos-1 — - 1“+ ti(m’ + 2)

,P t “~ 2(m12 . 1)3/G ~f 2(m’2 - 1) 4(m’ + 1) J= -1

For an arbitrery taper ratio where the leading or trakng edge is perpendicular

dream direction,

(1
A Cy “=

4

[~

1

b

1

+—
B(l - k)

(l+k)p’(l+k) +2(14] l+X

(11)

tm the free-

P
-F

(10)

d

. . .
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For rectangular vertical .tails,

/

(13)

()Data taken from reference 2 were used to obtain c~es for B Cy
$-t

for taper ratios of O, 1/2, and 1 for various values of sweep an@e,
Mach number, and aspect ratio. These data are presentedin figure 6.

()
Calculations for the effect of the horizontal tail on the derivative Cy

$t
were made. These calculations are presented in figure 7 for taper-ratios
of O, 1/2, and 1 for various values of sweepback angle, Mach number, and
aspect ratio.

Figure 8 presents same illustrative variations of the derivative Cy ‘ ‘
e

with and without the horizontal tail for various values of Mach number,
aspect ratio, sweep angle, and taper ratio.

()Since the derivative ‘Cy and the effect of the horizontal tail
Pt

on this derivative are based on the area of the vertical tail.,both C&

()

() P-t’
and, A Cy must be multiplied by the ratio ~/~ before they are used
. Pt
in stabili@ calculations. Since the lateral force is the same for both .
body and stabili~ axes, then Cy ‘

,9 ()

and ~
Pt

are related by the

Sv

()
equatibn Cy ‘ = ~Cy

P w Pt”

()Derivative Cn
$t

It is convenient to express the yawing moment due to sideslip of the
vertical tail relative to the body axes, the origin of which is located
at the center of

edge of the root
vertical tail in
dimensionally as

\

gravi~ of the airplan6 a distance Zt from the leading

section of the vertical tail. The yawing moment of the
the presence of the horizontal t-ailis then given non-

(Q= (%)R+?) (14)

—.—— -— .--— ———. ——.— —.- ——.- _—_.—__
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i

vertical tall

x-axis between

where ~ is the x-coqmnent of the di~tance of the center of pressure of the

from the leading edge of the root section, and 2t is the distance along the

the center of gravity of the airplane and the leading edge of ths root section of tb vertical

tdl .

The d.lstance % was calculated in the USUSJ- manner frcQI a consideration of the moment dti

to pressure_diatxibutlon oWer the vertical tall Emrface. The resulting e quatlons for *h

distances X are as follows:

Mach line from the root section

For

I
z=

an sxbitxsxy tiper ratio,

coincident with the leading e~e:

2~~3(K - 1)2 -

[, 2

6J%(K - 1) : 1.2JK2] 4K(1 - 4K2)

()

+’

Cyp t3nK% + A)(X2 + k + 1) J3(1 - K2)

.

V(K - ~)2(2K2 + 6K +7) - 4JK(K - 1)(4K2 - 3K - 16S+ 12K2(18K2 -K - 2)l@ +J(l -K)

1~2(1 - K2)2 ~ J(l + K)

(2&(4JK+ J-l&~(4K-2JK+2J)3 M2(4-J)-(~-J-~)-(J+x-w~~ -JK+J

30@(K + 1~ 5/2 - J-K(1 + K)
{-

2 ~J(K + In 3P -

(JK -I-J + =)%1/2

8J(1 + K)3/2

coa-l W-J-=

JK+J+~
1)]

(15)

, ,
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taper ratio of 1, .,a

F= 1 (. ‘[-2b’v

()

4(3&’2 +20A’
Cy 45nA‘ ~

Bt

{

4~~ 9’- 5A” 2A’ -5

[
(~1

3nJu 15A’ 16A’

.

+9)-

.

2A’-1

2A’ + 1
1)

(2A’ +1)2 CO*-1
21/zF

(16)

Mach line from the root section cut~ the trailing

For

z=

an arbitrary taper ratio,

r

2(K2 - l)(K?m’2 - 1) o.

K%@n’2K4 - K2 - l)JZ -1
co”-1 —+

3(K2 - l)2(m’%2 -.l)~~li’i Km’

8.

J(3K + 2m’K2 + 2m’K II+l) JF7i’.

121@’2(K - 1)(1 + m’K)~~~=
(17)

.

.

- ,—— .—— ..- —~—...—. .. . —. . ~ .-. .—. ._ —.. -
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For a taper ratio of 1,
.

A’(2m’2+rn’) 6m16 - 8m;~- 17m’4 + 2m’3 + ~lz

~+
(18)

12(m’2 - 1)2

An expression for % & a somewhat different form from the preceding .
equations is presented in reference 6.

()
The values of CY used in the ‘

$-t
“ preceding equations must or course be valid for the ~tic~sr Mach line

arrangement over the tail for which the distance % is to be determined.

The results for the derivative C
(%)

are given relative to a system
t

-o-

f body axes located at the leading edge of the root section. (See
fig. 2.) The transformation formulas for conversion from body axes to
stability axes are given in reference 7. To the first order in a
(small angles of attack) the formula for the contribution of the tail to
the derivative C

%
‘, based on the wing srea and wing span, is givenby

. “

c%’ =%j&)t-wt] ‘

●

(19) .

where the prime refers to the stability axes with the origin located at
the center of gravity of the airplane.

The end-plate effect of the horizontal tail on the derivative C
()%t

may be expressed in terms of the change in the center-of-pressure - ‘ .

()
distance ~ and the change in CyP t. The change ~- in the center-

of-pressure distance ~ is equal to the di?fer.encein the distance %
with the horizontal tail attached to the vertical tail and with the
vertical tail alone. Mathematically, the increment in ~ is givenby

a–=

. . . . ——

qcY;)t + bvA(qt - ~

(c+ +~B)t

(20) *

.—— -.—



(kwhere the quantities ~, Cy
P ()

, and the change in CY
Pt

due to the horizotial tail, have g

previously been determined.

()‘e ‘wti@ A c% t
depends upon the plan-fo= geometq and Mach S’

line location. For the condition where the Mach line from the leading edge. of the root ~ection Q

i
()cuts ‘he ‘=1- ‘we’ A c% t

iE given by the foIJ.0~ eqresaiom:
P
P

PJ

I For an arbitrary taper ratio,

1

.,

b’ - l(yc +’Khf - ~,

k(l - K)2(m’K - 1-1)11(a)lj/Y@m
.,

l?& a taper ratio of 1,
I

t ()

~!’ ‘

, [m,

‘4 - lGm” + 4 ~oa-~ 1
AC

9 t “ ~t’fl~~” -
-- ++ “(:;m:;!$(;,:’,;4(m’2, - 1)2 mI

‘1

(22)

For a” straight trailing edge,

~

H

16

1 {

1 1

1

(23)c%=- A’(1+~)2 (1 + L)~A-@(l + k) + 2(1 - k]
,.

I
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For a leading edge which is perpendicular

NACA TN 2412

to the free-stresm direction,
.

._

(1-k) +A’(1

.

#

For rec~angulsr vertical tails,

As preciously indicated, the derivative

terms of the

distance Z
sweep angle;
in figure 9.

(25)

()
Cn maybe expressed in
13t

()derivative Cy andan-~.
Pt

Calculations for the

W&e made for taper ratios of O and 1 for various values o,f
asFect ratio, and Mach numb&. These results are presented
Since the formulas for ~ for the case where the Mach

.

line from the root section of the vertical tail cuts the tip were not
fore-d,the curves &or ~ were faired through tlxisregion. The faired
parts o~’the curves are dashed in figure !3. The change in the dis-

.

tsace X due to the horizontal tail was calculated for taper ratios
Ofoandl. The-results of these calculations sre given in figure 10.
Figure 11 presents same illustrative variations of the derivative C ‘

9
with and without the horizontal tail for various values of Mach number,
aspect ratio, and sweep angle. .’

()Derivative Cl
Pt

The rolling moment due to sideslip maybe csilculatedby integrating
the moment of the pressure loading about the root chord of the vertical
tail. Although the p?essure distribution over the horizontal tail does
not contribute to the lateral force or yawing moment it does affect the
rolling moment due to sideslip. The integrations of the first moments
of the pressure for sideslip were therefore perfomed over both the vertical “
and horizont~ tail surfaces.

I

.,

—.— —.-.—.———— _.——. ——- ——
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The total,rolling-moment derivative may be written as

(qt.= (q-t +p,),. =(’w%ree’z)+(’l,)ht
,—

= (%)t($)+ (qht ‘~

21

(26)

The first term of the preceding expression, which gives the vertical-
tail contribution to the rolling moment, has been expressed in terms of
a force

()C% t
and an arm ~. The rolling-moment arm ~ was determined

by evaluating the rolling moment (due to sideslip) about the xbody
sxis and dividing the moment by the lateral force. For the condition
where the Mach lines from the leading edge of the root chord are coin-
cident with the leading edges, Z is given by the following expressions:

For a taper ratio of

z= -%
“ ‘%$

1,

{

(2A’ - l)(ii’ +1)2 =os-~2A’ -1+~+

64 2/3’+1 15

~32A@ - 20A” - 15]@

480 .1
For an arbitrary taper ratio,

(27)

1

J(l-K) +K @~(l+K) -m]~(l+K) +=]2 J(3K-1)-2K
Cos-1 +

K
Cos-1

128(1 +K)2/~K J(1+K)+2K
+

~ /’==](28)K~2(l -K)2(1+K)(7K +3) +8JK2(1 -K2) - MK2(1+K)2] J~(l-K) +x]

96(1 - K2)2

. . .. —- -- —.- -——.-— ————————— --——— -— .. ————. —— _—— . ..-.



For the configuration where the Mach _Me from tie leading edge of the root chord cuts the

trailing edge of the vertical tail, Z Is &lven aE follows:

I
For an arbitrary taper ratio, ‘

z-
-16~

()
3&(l + L)B Cyp ~

[ T.
~2m13(l + K2)

“COs-l L +

x(1 - K2)2 m’ - 1 m’

2K~’3(.3 + 2K%’2 + K2) -1 &T3 , ‘
Cos-1 — -

YI~~l~~(K%’2 - 1)(1 - K2)2 ml’ fi(l - #)(&m’2 - 1)

J(l - K) + 2m’K

fi{(l + m’K)(m’ - 1)

[J2(1 - K)2(3K - K2 + 3K3 + 2K%I + E!K3m, +

8m’%3 + 6m’K + 3) + &%L’J(l - K)(m’ + l)(2m’K2 + 3K2 - kK + 3) +

For a taper ratio ,of 1,

1

}
@(l - K)2(1 + m’K)2 ‘

-%

{

mla(k - ~!2 ~m!h) 1
z.

m13(m12 - 4)

()

COB-1 — + +

A’2B Cyp ~ 3fl(m’2 - 1)5/2 m’ 3fi(m’2- 1)2

m’ 2h’2(m’2 - 1)2 - 12A’m’ (m’ + J_)(m! - 1)2 + m’2(-2m’4 + 7m’2 - 6m’ - 11)1

12(m’2 - 1)5/2 1

(29)

(30)

,



. .

An expression for ~ in a different form for the cases givenby equations (29) and (30) is

presented in reference 6. The consideration regarding the contribution of the horizontal tail E
*’

to the roUing moment due to aid.eslip Cz
()

requires special emphasis, Because of its emi-
~ ht a

plate effect, the horizontal tail induces a pressure on the vertical tail. The vertical tail in

turn induces on the horizontal tail a pressmeli.eld that is boundedby the trace on the hori- P

zontal tail of the Mach cone springing fran the leading edga of the root section-of th vertical
F
n)

tail. This pressure on the horizonti tail induced by the vertical tail gives rise to the

rolJdng-mcment contribution of the horizontal tail. For ~sitlve sideslip (pmitive angle of

attack), the perturbation flow over the right-side swface (tiwwd nomnal to Emrface in direction

of positive y-axiE) of the vertical tdl induces a downward force on the right panel of the

horizontal tail and, stilerlY, the perturbation flow over the left-side surface of the vertiqal

tail induces an ecpfvalent upward force on the left panel of the horizontal tail. For sideslip,

the rolling-manent contributions about the bcdy -s of the vertical and horizontal. tail axe of

opposite signs and ted to counteract e~h other.
()

The quantity Cl was’ found by integration
P

and is @ven by the following expression for @ arbitrary ta~r ratio ? including a taper ratio of,l):

(31)



.-—

The results for the rolling-moment derivative were given relative to a
system of body axes located at the leading edge of the root section.
(See fig. 2.) The transformation formula for conversion‘ofthe rol.ling-
moment derivative from body axes to stabili~ axes is given in reference 7.
The rolling-moment derivative about the stability axes based upon wing
area

when

and TO&W span is given by

,.

only first-order terms in a sre retained.

(32)

The end-plate effect of the horizontal tail on the derivative Cz

()

() p-t
is made up of three-effects: The change in Cy the change in the

P t’
distsace ~, and the change in the rolling moment due to the horizontal

()
tail Cz

()
The chsmge in Cy

~ h~” P-t
and the change in the rolling

moment due–;o the horizontal tail_l&ve already
only the ~hange in the distance Z remains to
change AZ in the center-of-pressure distance
maticslly as

.

been e~aluatedj hence;
b~ evaluated. This
Z canbe writtenmathe-
.

,
●

~= %)t +W%)vt
(%J+‘(%h-

(33)

()where A Cz is the change in the rolling moment due to the vertical
pvt

tail.
()

The quantim ACZ W4S found by integration ana is given by
Pvt

the following equations:

For.an arbitrary taper ratio,

()
3~13K2

[

1+K2 CoS-l L .
K2~~

A C2 +

Pvt = fiJ2(l+ k)~~i 3(1 - K2)2
ret-,.

3(1 - K2)(K2mt2 - 1)

Klm=( -%+ 2K3m’~ + K3) Coa-l + +

3@ETi(l - @)2(m’%2 - 1)~~ KiQr

~=(-2Kh’2 + ~’ - K3m’ + $- 3K

12(m’K - 1)2(1 - K)2@== ‘
.’ !

(34)

— ..— -— —. ——
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For a taper ratio of 1,
.

()
ml3

[

m 14-~,2+4 ‘ 1
A Cl

1%=
COB-l — +

3~’2 (m’2 - 1)2 d= m’

I

m12 - 4
I

1

4-2mt4 + 7m’2 + 6m! - 11)
(35) “

(rnr2 - 1)2 + 4(rn12‘_ 1)%/=

Equation (26) indicates that the derivative Cz
() P-t”

can he expressed

in terms of the derivative Cy
()

an arm ~, and a moment due to the
p t’

horizontal tail. Figure 12 shows calculated values of the arm ~ for
taper ratios of O and 1. The dashed parts of the curves of figure 12
are faired since formulas were not found for this region. Figure 13
shows calculated values from which the moment due to the load on the
horizontal tail may be evaluated.

The change in the distance ~ due to the horizontal tail was”
calculate for taper ratios of O and’1 for various values of sweep angle,
Mach number, and aspect ratio. These calculated data are presented in
figure 14. Figure 15 presents some illustrative variations of the
derivative CZ ‘ with and without the horizontal tail for various values

P .

of Mach nuniber,asyect ratio, and sweep angle.

DISCUSSION

The calculated results for the derivatives of the combination of
the vertical and horizontal tails show the expected trends; however, a
few remits concerning the end-plate effect of the horizontal tail may “
warrant discussion. Figures 6 and 7 indicate that msximum decrease in

()
Cy due to removsl of the horizont~ tail iS from 25 to 30 I?ercent

$-t

( ).of the value of CYB +. This maximum appears to occur at a taper ratio. ...-
of O for low values of the parameter BA. From this maximum the end-
plate effect decreases to values which are negligible compsred to the

()
values of Cy for large values of the psmmeter BA. The effect of

B-t
“c the horizo&~’tail on’the derivative C

()~t
depends on 4%) and

f3t

on the length of the arm (Zt+%). Generally, the length Zt is

somewhat larger than the length ~; therefore the chan&e in ~ due to

.

.—— — . _.—_ ---- ..—.— —— ..— —.- .. ..— __.— --- . . .._ . . —- .. ---- -
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( )“ ln ‘hese :the horizontal &il has a mill effect on the arm Zt + %

cases the effect of the horizontal tail on the derivative C
( 93)

haa
t

the same trends as those of the derivative CY
()

.
The end-plate effect

f3t“
of the horizontal tail on the derivative Cz is made w of the change

() @t
in the distance ~, the change in the lateral force ACy

()
and the

13t’
rolling mmnent due to the horizontal tail. The rolli~-m&ent causedby
the load on the horizontal tail opposes the rolling moment due to the
load on the vertical tail so that it is pssible for CZ

()
to,be

Pt
increased or decreasedby removing the horizontal tail. This effect is
shown in figure is(b) or-is(c). -

PROCEDURE FOR

AImc
%

CA.LcmATION OF

FOR GIVEN TAIL

The results of the preceding
may not be conveniently presented

SNIZJ?IT DERIVATIVES Cyp, Czpj

ARRANGEMENT ~, MACH NUMEER

analysis of the sideslip derivatives
in a form from which values of the

derivative canbe directly obtained. The pui-poseof this section is to
set forth in detail a procedure for the calculation of the stabil.i~
derivatives for a given tail arrangement andltach nuuiber.

The proper use of the formnlas derived in the previous section
reuuires the following consideration of the radical sire. The radical
si& ~ is defined–as the positive root of the quan~i~ under the
radical; thus if a is a positive num%er,

. However,

The

products
value of

(( )~2.a

note that

~~=i~i~=-a+ ~-

Lateral-Force Coefficient for VerticaJ-

Tail in Presence of Horizontal Tail ‘

()
derivative Cy may be determined as follows. First, the

P-t
M and Bm are evaluated. The second step depends upon the
the taper ratio of the vertical tail together with the degree

, .

..

.
.

..——— — — —–— .—— — -— -—- —-



NACA TN ,2412 27

.
of accuracy desired. If the taper ratio of.the vertical tail is O, 1/2,

( )
or 1 the value of Cy may be obtained directly from figure 6. If

B-t
the value of the taper-ratio is not O, 1/2, or 1 and if e@eme accuracy
is not desired the values of ~

() $t
may still be determbed from

figure 6 by interpolation. If greater accuracy is desired the position
of the Mach lines on the vertical tail must be determined. The values

()
of Cy

p-t
may thenbe evaluated from equations (2), (4), (6), (8)j or (9)

depe-ndingon the plan form of the vertical tail and on the Mach line
configuration. The conversion of the lateral-force coefficient frcnnbody
axes to stability axes and the conversion from a
the vertical-t,p.ilmea to a coefficient based on
by the expression

coefficient based on
the wing area is given

ST

()Cy’=<cy
P w Pt

()Lateral-Force Coeffi.cf.ent CY of Isolated Vertical Tail
Pv

The lateral-force coefficient for a vertical-tail alone (CV.)

may be determined for the case where the Mach
cuts the trailing edge of the vertical tail.

Cient‘s ‘ivenG(%2 = C%Jt + ‘(%L

-.
()

Uating Cy has been discussed previously.
Pt

.

\ ‘PAT
line from the center section
The lateral-force coeffi-
The procedure for evsl-

The procedure for eval-

()uating A ~ is as follows. For taper ratios of O, 1/2, or 1 the
P-t

values of -
4)

Cy
Bt

may be found from figure 7; ifj however, the taper

ratio is not O, 1/2, or 1, good approximations to the value of A Cy
() Pt

may be determined from figure 7 by interpolation. If greater accuracy
is desired, the value of A Cy

()
must be calculated from equations (10),

(12), or (13) depending on thepp$an form under consideration. The
conversion of the lateral-force derivative for a vertical tail alone from
body axes to stabilim axes including the conversion of the derivative “
based on the wing mea is given by the formula

CY; = >&y,)v = Z[%)t ‘%)J

.

__-. ———— ~— .= ..— — .—-—-— __ .——.
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Yawing-Moment Coefficient for Vertic&. Tail in
w

Itresenceof Horizontal Tail

()The derivative C
~t

My be expressed in terms of the quantities

l@vY
( ).
CYP tY and T/~ as follows:

‘ (c%)t=(cyP)t(&+;)~
The geometric quantiw lt/~ is known. The procedure for finding the

(
ql.lantiw CyB)t has been given previously. The evaluation of the

quantity ~/& may be determined as follows. Firstj of course, the

products BA and 13m me evaluated. The next 8tep depends upon the
value of the taper ratio of the vertical tail. For vertical tails which,
have a taper ratio of O or 1, %~ can be obtained directly from

figure 9. If the taper ratio of the vertical tail is not O or 1, inter-
polation maybe used to obtain ~/~ if the degree of accuracy desired

is not great. When ~eater accuracy is desired the procedure to be
followed depends upon the Mach line configuration of the vertical.tail.
If the Mach line from the root ~ection cuts the trailing edge, z/~

maybe evaluated from equation (17). For the cases where th~llachline
from the root section is coincident with the lead@g edge, X/~ can
he evaluated fr~m equation (15). If the Mach line from the root section
cuts the tip, X/~ cannot be’directly evaluated; it canbe approxi-

mated however, by interpolationbetwee”nthe values of ~/bv for the case
where the Mach line ‘fromthe root section is coincident with the leading ~
edge of the vertical tail and for the case where the Mach line from the
root section cuts,the trailing edge. .

The-conversion of the yawing-moment coefficient for a vertical tail
in the presence of a horizontal tail from body axes to stability axes
(including the change in the coefficient so that it is based on the wing
srea and span) is given by

c~=~&&-f%)t]
where a, of course, is assumed to be small. .

.— —.— --—-— .——— ~—-. — —-.
.

+
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Yawing-Moment

29

Coefficient for Vertical Tail Alone

The yawing-moment coefficient for a.vertical tail alone C
(%)

was
v

investigated for the case where the Mach line from the root section cuts
the trailing edge. This derivative can be expressed as

The procedure for evaluating the quantity Cy
()

has been given
pv

previously. Once the products Bm and Ii4 axe evaluated.,the quantilqy
N-/~ may,be found directly from figure 14 for taper ratios of O and 1.

For other taper ratios between O and 1 the quanti@ z@~ can be esti-

mated by inte~olation by use of figqre lb.

If geater accuracy is desired in the evaluation of

followlng procedure msy be used. The derivative C. ~
(%)

as

(%+=(%),“’(%J
(hThe method for calculating the quantity C

9
has been

. . .

(%)c
v

j t-he

can be expressed ,

set forth

previously. ()The qyantity A C
%

can ~e’e~aluated from equation (21).

The conversion of the yawing-moment coefficient for.a vertical tail
alone from body sxes to stability sxes and from a coefficient based on
the vertical-tail area and.span to a coefficient based on the wing area
and span is given by’

where a is assumed to be smalIl.
.

.

.

./

.

-. —.-..——.-—.—..—..—— —- .-. —--— —. —.. —... -.— ——. ——
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Rolling-Moment Coefficient

and Horizontal-Tail

The rollin$!-momentcoefficient for

for Vertical-Tail

Conibination

the vertical-tail and horizontal-

.

.

()tail Combination Cz can be expressed as
pt

(c+ =(C+)-t+(Cjl)ht=p,)t:+(Cz,)ht

●

The procedure for finding the quantiti Cy
()

has been considered
pt

previously. Once the products Bm and AB are evaluated ~/~ may

be found from figure I-2for taper ratios of O and 1. I.ftk_ taper ratio
of the vertical tail is not O or 1, approximate values of Z/~ can be

obtained by In&rpolation. For accurate evaluations, the Mach line
configuration on the vertical tail must be determined. For cases where
the Mach line from the root’secti~n is coincident with the leading edge
Qf the vertical tag, values of z/~ canbe found from equation (28).
For cases where t~e Mach lines from the root section cut the trailing
edge, values of Z& canbe found from equation (29). If the Mach line

from the root section cuts the tip, ~/~ .can”onlybe a~roximately ,/

evaluated by interpolatingbetween the values of ~/~ for the condition

‘where the Mach line from the root section is coincident with the leading
edge of the vertical tail and for the condition where the Mach line from
the root section just cuts the trailing edge.

()The quantity CZB ht was investigated for a horizontal-tail plan
/

form for which the’tr~iling edge is swept at a constant angle, for “
Mach nunibersfor which the Mach line from the root section cuts the
trailing edge of the horizontal tail, and where the Mach cone from the
leading edge of the tip section of the vertical tail does not intersect
the horizontal tail.

()
For this case, the quantity Cz can be found

~ht “
with the use of figure 13 or it maybe calculated from equation’.

The conversion of the rolling-mument derivative for.the vertical-tail
and horizontal-tail combination from body axes to stability axes (including
a change in the derivative so that it is based upon the wing mea and
wing span) is givenby .

Czp’=sp%)t+T+j
where a is assumed to be small.

.

— .——— —.—— -——— —
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Rolling-Moment

31

Coefficient for Vertical Tail Alone

The rolling-moment coefficient for vertical tail alone (C, } was
{ “PJT

investigated for the case where the Mach line from the root section cuts
the trailing edge of the vertical tail.

()
The derivative CZ can be

pv
expressed as

w=f+(:+$$
or

(%).=(%)ti‘A(%)ti

(36)

(37)

The procedure for the determination of Cy( ,); W%Oid(cz,); has

been given previously. For taper ratios of O or 1 the quantity A!Z/~

can be found directly from figure 14. Thus, CZ
()

can tiefound from

equation (36). If the taper ratio is not O or lPt~ value OX M–/~

may be estkted from figure 11
. ations,

()
the quanti~ AC7

()

pti
Thus, Cz can be found from

pv.

by interpolation. For precise ev”du-
may be evaluated from e-quation(31)..

eq&tion (37). ‘ ~
.

The conversion of the rolling-moment coefficient for a vertical tail
alone frmbody axes to stabili~ axes and from a coefficient based on
the vertical-tail area and span to a coefficient based on the wing area
and span is given by

where a is assumed to be small.

CONCLUDING REMARKS

The linearized theory has enabled an evaluation of a first approxi-
mation to the lateral force due to sideslip Cy , the yawing moment due

$’
to sideslip C , and the rolling moment due to sideslip Cz

%
for a

B

i

. . — — — ..———— —_ — - —z -————. . . . --
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nu@er of tail configurations. The imfluence of the wfng on’these tail
v

derivatives has not been considered.

The suitability of the results for full-scale flight stability
.

calculations is necessarily I.ihitedbecause of the restrictions of the
linearized potential-flow theory.

Langley Aeronautical Laboratory
National Advisory Committee for Aeronautics

Langley Field, Vs., February 2, 1951

\
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(b) Taper ratio, O. “-’ -. ‘.7
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(c) Arbitrory taper mtio. “x’.~- ---
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Figure 1.. Types of vertical tails treated. -
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